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ational method automatically adjusts the amplitudes of

surface-wave modes in the appropriate manner to con-

struct the system modes, but the various integrals in

Section II will diverge if radiation modes are used, so that

some modification of the present method would be neces-

sary to treat problems of this type.
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Single-Mode Puke Dispersion in Optical Waveguides

EDWARD F. KUESTER, STUDENT MEMBER, IE~E, AND DAVID C. CHANG, MEMBER, IEEE

Abstract—The limitations of a widely used method for analyzing
puke distortion in a single-mode waveguiding structure are derived.
The results are applied to propagation in optical waveguides, and for

cases where materiaf dispersion is dominated by a broad resonance
line, pulse attenuation is found to be much more serious than the

broadening of the pulse. In extremely low-loss regions, however,
other effects may cause the reverse to be true.

I. INTRODUCTION

WITH THE RECENT development of extremely

low-loss optical waveguides [1] rnaklng feasible

long-distance transmission via this medium, there has

been increased interest in determining the pulse charac-

teristics of such devices [2], [3]. These characteristics

are determined by the nonlinearity of the L? — u charac-
teristics of individual modes, and, in multimode guides,

by the differences in group velocity between different

modes. In thk paper we address ourselves to the first of

these causes, referring the reader to [3] for a discussion

of the second.
We shall obtain a more precise formulation for the
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region of validity of a widely used tectilque [2], [4]–[6]

“for analyzing, approximately, the distortion of a single

pulse, and apply these results to the study of such pulses

in optical waveguides.

II. PROPAGATION OF A GAUSSIAN PULSE

We seek to analyze the behavior of a pulse of Gaussian

envelope

j(t) = (a%)-’/2 exp ( – t2/2a2) exp (jcoOt) (1)

with center frequency LOoand width a which has been

normalized to unit strength

/

m

_@\ f(t) pat= 1

as it propagates along an arbitrary transmission channel of

transfer function S(u) = exp[–jfl (~) L]. Here L is the

length of a section of the channel between the input

(.z = O) and the output, and ~(~) = h(co) – ~&(co) is

the frequency-dependent propagation constant of the

channel split into phase constant and (power) attenua-

tion constant. The output signal is then represented by

the usual Fourier-transform method

(2)
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wheel’ isthe transform off(t)

l’(u) = /mj(t) exp(–jut) dt
—m

= (2ati)’12exp[-*a2 (u-u0)2].

We shall assume throughout the paper that f(t)is “quasi-

monochromatic”; i.e., that umo >> 1 so that F(u) is sig-

nificantly cliff erent from zero only in a very narrow band-

width about uO.

Commonly [2], [4]–[6], this type of problem has been

analyzed by expressing D(u) as a Taylor series about w

p(@)L = {/30 + (co – w)/30’ + +(6J – uo)’h”

+ *(@ – Qlo)’po’” + -“”)L (3)

where primes denote differentiation with respect to u,

and the subscript zero indicates evaluation at WO. If the

series (3) is truncated after the third term, it is a straight-

forward matter to evaluate (2) in closed form [2] to obtain

q(t) = r(t – L/v.O) exp[–*aOL + jtio(t – L/VPO) ] (4)

where VP = CO/h(u) is the phase velocity and V. = l/h’(~)

is the group velocity. The envelope of r(t) is given by

+:+[’+(%9’1}‘5)
where

b = [ao2 + (hO’’L/aO)2]1/2 & = [a2 + &Yi’L]1\2. (6)

Thus, outside of amplitude factors, phase delays, and

group delays, this analysis predicts that the signal remains

Gaussian but is broadened from the width a to the width lJ.

The usual justification for the foregoing method is

that the spectrum F(w) is negligible away from COO, and

any error caused by truncation of the Taylor series (3)

will therefore not be significant. However, for sufficiently

large L all spectral components become important, and

just when (4) –(6) cease to be a valid approximation to

the output is unclear. Some improvement might be ex-

pected if, say, the fourth term of (3) were retained, as

done in [7]; however, because (3) has a finite radius of

convergence, retention of additional terms of (3) will

not, in general, improve the region of applicability of the

solution obtained in this way [5]. Furthermore, quite

apart from the type of signal $( t) we are considering, the

three-term approximation to B(Q) does. not represent a

causal dispersion relation [8]. Finally, if only three terms

of (3) are used, we must have a’ + +w”L > 0 for the

integral (2) to converge, and it is not clear how essential

this condition is.

What is needed, then, is a way to “pull out” the Taylor

series from under the integral sign somehow so that the

error incurred by its truncation may be more easily

estimated. One way to do this [6], [9]–[11] is to apply

the method of saddle points [12] to (2), where we may

883

take a2w02 as the large parameter by virtue of the narrow

assumption on j(t). We thus rewrite (2) as

(2a15) ‘/2 m
q(t)= 2T

/
exp[a2coo24(u)] du

-m

where

Any saddle point w. must satisfy

or equivalently

t – @’(w,)L
f&=o.@+j

~2 “

(7)

(8)

(9a)

(9b)

Assuming for the moment that the path of integration

may be deformed from the real axis into a steepest descent

path (SDP) passing through the saddle point co, in the

complex u plane, and also that only one saddle point

contributes to the evaluation of (7) (we shall examine

these points more closely), q(t) may be repre~;ented by the

first term of the saddle-point asymptotic series

q(t) w [(a&) u’cw]-’[-o” (ti.) ]-u2 exp[a2m2,$(co.) ].

(lo)

The branch of [– ~“ (co.) ]-llz is chosen so that

arg[— @“ (m) ]1/2

is equal to the slope of the SDP at w with respect to the

positive real axis.

At this point there is no integration to perform and

there remains only to calculate @(co.) and q!;’ (u,) (since

w is, in general, complex and we presumably have in-

formation about ~ (CO)only on the real axis of the complex

~ plane, and only at certain points) in terms of quantities
evaluated at ao. Since now u. is defined implicitly and fun;-

tions evaluated at w are required, the simple Taylor series

(3) no longer serves our purposes; we make use of a series

expansion due to Levi-Civith [13] (details of the deriva-

tion for the complex case with remainder term must be

assembled from [14] and [15] since the infinite series

only is given without proof in [13]). Briefly, given func-

tions ~ and # analytic over suitable regions and a variable

y defined implicitly as a function of another variable x by

Y = z + $(Y), we may expand f(y) as

R = X[lj(z) ]“
[{

1 }1d“
91

1 – *’(W) ix
j(w)

n!
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andxand ware relatedbyw — #(w) = x — (?#(x).Here

0 is some real number with O <0< 1, and A is some com-

plex number with I k [ ~ 1.

If we take~(y) = @(u.), y = a,, z = W, #(y) = j[t –

B’(w.)L]/a’, and n = 4, we have

4(w) = j(cod – POL) (a’uO’)-’ – (t – @,’L)’

. [2a2mj2(a2 + j~,”L) ]-1 – @o’’’L(t – L?O’L)3

.[6a2c002(a2 +j&’’L)’]-’ + O[(tU – 60’L)4]. (11)

Similarly, if we use ~(y) = O“ (w) and n = 1, we get

#“(co.) = -[1 + jBo’’L/a2]/w02 + RI (12)

where

h ,6’” (Q)L(t – f?,’L)
R,=—

a2coo2 a’ + j&’(Q) L ‘

The point Q satisfies

Q = u: – j9(t – @,’L) /a’ + j[t – L?’(Q) L]/a’

for some constant O on [0,1]. h is a complex number of

magnitude not greater than one, as indicated previously.
The insertion of (11) and (12) into (10), neglecting

RI and the third and fourth terms on the right-hand side

of (11), yields precisely (4) –(6). If we may, for purposes

of error estimation, approximate functions evaluated at

Q by the corresponding values at tio (this is reasonable if

I w – @oI is not too large, an assumption consistent with
the upper bounds on L found later in this paper), then

this neglect requires that we satisfy the conditions

(13)

and a similar condition involving I @IivlL I which can be

shown to be satisfied for tand L of interest as long as (13)

is.

III. INTERPRETATION AND LIMITATIONS

OF THE RESULTS

The condition (13) for the validity of (4) –(6) is not

independent of t,but holds only for sticiently small

I t - @JL I/l a’+ jPo”L 1112.Thus the Gaussian character

of the output pulse is preserved only if we follow closely

enough the crest of the pulse envelope, whereas the tails

of the pulse may be distorted in an unknown way. Equa-

tions (4) –(6) will still be meaningful if they retain validity

for the most significant portion of the envelope; i.e.

I t – @o’L l/1a’ + j&”L I’/’ s 5.

Therefore, an equivalent reformulation of ( 13) is seen to be

I i%’”L I /5 I a’ + iiI”L 1312<<I. (14)

(Notice that ~~” does not necessarily have to be small

compared to ~or’a. ) In fact we do not need to concern

ourselves at all with the pulse tails, since the Gaussian

is nonzero for all t and therefore does not represent a

causal signal in the sense of information transmission. It

is possible to truncate the signal at points of arbitrarily

small amplitude on the tails such that the transient pre-

and postcursors resulting therefrom will have arbitrarily

small amplitude compared with that of the Gaussian

[11]. The details of dispersive propagation of signals

with such abrupt turn-on and turn-off points have been

described elsewhere [16].

Thus the additional time-displacement term a,’ho’’L2/2~2

in (5) may not be explained in terms of the noncausalit y

of the signal [17]. Instead, it must be realized that the

presence of frequency-dependent absorption results in a

differential attenuation between different frequency com-

ponents of the pulse which results in the previously men-

tioned displacement of the pulse maximum. One implica-

tion of this is that, in absorbing transmission channels,

the classical group velocity no longer gives the velocity

of energy propagation, a point discussed further in [5],

[6], [9], [17], and [18].

Another condition of validity for (4) –(6) not reflected

in (13) is that the contour deformation from the real axis

to the SDP in (7) be permissible, and that only a single

saddle point in the neighborhood of w, contribute to the

asymptotic evaluation of the integral. In the first place, any

singularities of B(u) encountered in the deformation must

be such that their contribution to the evaluation of (7)

is small compared to that of the saddle point as a result of

being damped out by the Gaussian envelope. If this were

not the case, WS would be so close to the singularity that the

lower order derivatives of D(u) would be expected to be-

come large (as discussed at the end of the previous sec-

tion) and (4) –(6) lose validity anyway.

For L > 0 but sufficiently small, the inverse function

theorem [19] assures us that o,(L) is unique, at least in

the neighborhood of COO,if 1 + j~” (co)L/a2 # O in a

suitable neighborhood of CO..It can be shown that condi-

tion (13) is sufficient to assure us this uniqueness. Un-

less such a zero occurs near u., the Levi-Civitd, series

unambiguously gives an expression for co,(L), and any

other saddle points are assumed either not to be encount-

ered on the SDP deformed from the real axis, or to con-

tribute an exponentially small term, due again to the

damping of the Gaussian. Now from well-known properties

of materials and waveguides, we have it that for suf-

ficiently high frequency B(~) N CO/C[20], [21]. This be-

havior is not enough to essentially alter that of @(co)

which is dominated by the Gaussian. In the general case,
the regions where Re[d (a) — @(Q,)] < 0 can be de-

scribed asymptotically and are as shown in Fig. 1. The

contour deformation is readily shown to be a permissible

one.

It should be noted here that the condition a2 + %cY,”L >

0, which is required to assure the convergence of the

inversion integral when (4) –(6) are derived in the con-

ventional manner [5], is, as”such, not necessary here. The

condition that is required is that 1 + j~” (u) L/a2 have

no zeros in a sticiently large neighborhood of w; more

precisely, that such zeros UB, if they exist, should be such

that a2coo2I ~~ 12>> 1 so as not to affect the asymptotic
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Fig. 1. Contours of integration. Shaded area indicates Re [c@) –
o(u.)] < 0, where SDP may be joined to the real axis contour at
infinity. Here OM = cuo + j(t — L/c) /az.

evaluation of (7). A rough error estimate similar to the

ones given previously shows that (again, if we are not near

any singularity of 13(a), a self-consistent hypothesis)

condition (13 ) is sufficient to achieve this separation of

@B and u,.

In the Appendix, a specific functional form of 6 (co) is

examined in light of the discussion of this section.

IV. DISPERSION LENGTH CRITERIA

Using a parameter A = L/az, vre define and examine a

function G(A) which measures the relative broadening

of the pulse

G(A) = (z’/bz =
1 + +ao”A

1 + CW”A + I &“ 1’ A’
(15)

valid under the conditions outlined in the previous section.

If we consider a train of such pulses at a rate of N pulses/s

(with a corresponding duty cycle A = Na) there is a

certain amount of overlap between adjacent pulses. For

a given value of A, the relative power level of one of the

pulses (compared to the power level at the peak of the

pulse) midway between adjacent pulses is given by

~ = exp[– l/(2Nb)2] = exp[–G(A)/4A2]. (16)

This overlap level has its minimum value & at A = O.

In a practical optical communication system, accept-

able values of 6 may be restricted by the capabilities of

system components other than the transmission channel

(pulse generators, detectors, and so on). It therefore

seems most natural to assume that system considerations

result in a maximum allowable overlap level of &U, rather

than attempting to maximize the pulse rate as if the chan-

nel were in isolation, as done in [2]. A maximum usable

propagation length or dispersion length is then given by
LO = a2A0, where AO is the positive root of

G(AO) = GO = –4A2 in $~.x. (17)

It is readily seen that iiO < &aX is required for a positive

root to exist.

In two particular cases, the solution to ( 17~1takes rather

simple forms. If I &xO” I << I ho” I (such as in low-attenua-

tion channels)

Ao cx I ho” 1-1[(1 – GO)/GO]l/2 (18)

gives explicitly the dispersion length Lo in terms of &.x

according to (17). Furthermore, if one assigns Go = ~

(which is roughly a 40-percent broadening), (17) gives

exactly

Ao = I F4’ 1-’. (19)

V. DISPERSION IN OPTICAL WAVE) GUIDES

For single-mode propagation over real waveguides,

h“ (w) and a“ (Q) depend both on the geometry of the

waveguide and on the dkpersive propertied, of the ma-

terials used. Although, in general, the two effects may

be of comparable magnitude, under many conditions the

material effect is dominant [22] (in particular this is true

for dispersion-optimized fibers [23]). There even exist

structures in which the two effects can effectively cancel

one another, thus allowing extremely low-dispersion

operation [24]. Although in general the two effects are

not simply additive [23], they may be examined sepa-

rately to obtain order-of-magnitude estimates for guide

information rates.

Waveguide geometry effects have been studied for

many cases [2], [22]–[25]. A number of lossless and

lossy low-permittivity contrast (or weakly guiding) in-

homogeneous slab waveguides were studied in [25], and

even for guides with fairly high (500-dB/km ) frequency-

independent 10SS7I ~CY” I was found to be at least an order

of magnitude smaller than I h“ I in all cases, allowing the

use of (18). The largest dispersion found for any of the

guides analyzed was 2 I ho” I m 10–24 s2/m, so that a pulse

of width a = 3 X 10–11 s is broadened only 10 percent

over a distance L = 1 km (corresponding to a maximum

pulse rate of N = 30 X 109 pulses/s for this broadening

criterion). Fig. 2 shows a representative slab waveguide

and plot of a normalized version of I h“ I versus frequency

taken from [25].

In some situations, the material dispersion can be well

represented by a fairly broad resonance-type dispersion

law such as in the Appendix (the OH-radical absorption

due to the presence of water molecules in glass fibers is a

good example of this [26]). Away from the influence of

such resonances, however (especially in the extremely

low-attenuation regime of fiber materials such as silica),

other more complicated considerations will c:lominate the

behavior of ~(a) [27]-[29]. Since it is shown in the Ap-

pendix that, except for a region near the resonance peak

where the present theory does not apply, attenuation is

a much more serious problem than single-mode disper-
sion, and also since experimental measurements on low-

10SS fibers indicate that significant pulse broadening is

possible with minimal attenuation [30], such simple

models are evidently inadequate to accural,ely describe

the behavior of useful long-distance waveguide materials.
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4XI0-2
1

Fig. 2. (a) Normalized T1l-rnodebroadening parameter (d’P/CkJ2)
foraaymmetric slab wavegaide with e., = 1.50, e,z = l.OO,c,~,= =
1.53, d = 4 X 10fim, w/d = 0.2. (b) Permittivity profile.

VI. CONCLUSION

An analysis of single-mode pulse distortion has been

carried out using a method which enables the region of

applicability for a widely used approximation to be more

precisely specified according to (13). The model dielec-

tric dispersion law used in [5] is examined. The validity

criterion contained therein is found to be in error, and the

correct criteria in light of *he present derivation are

given. Applying the results to the properties of optical

waveguides, it is found that unless low-loss long-distance

guides are considered, material dispersion considerations

limit operation primarily by signal attenuation rather

than by pulse broadening. This is true in particular for the

relatively lossy materials tolerable in integrated optical

devices.

APPENDIX

In [5], a study was made of the propagation of a

Gaussian light pulse through a medium whose wave-

number B(a) obeyed the law

B(Q) = y –
~PQ

(20)
C(ti — u. — jy)

where n~, W, C02,and y are all real adjustable constants

and c is the speed of light. The Gaussian pulse of width

a described by (1) is then propagated and broadened

as described in Section II. It was assumed in [5] that the

resonance of the medium was broad compared to the

pulse bandwidth but still narrow compared with the

carrier frequency, and that the resonance peak dominated

the attenuation characteristic a(o) while only weakly

affecting h(u). In other words

tioa >> -fa >> 1

CO=/Y<<73.. (21)

For some range of t and L, then, equations (4)-(6)

apply, with

hell = _2 = (@o — ‘c) [(QO — @,)z — 372]

c [(@o – %)2 + 72]3

_ ~ %OJ. ‘Y[3 (@o — %)2 — 7’]Il. _+Y(J
c [(COO – 4’ + 7’]’

with the region of validity given by (14) with ,%

I@o’”I = * [(WJ– c%)’+ -f’]-Z.

Direct substitution into (14) gives a rather messy cri-

terion for L; however, sufficient bounds on L may be ob-

tained by considering two cases.

Case 1: L > –a,’’a’/l ~o” l’. This implies a’ < I a’ +

@O”L I so that we may rep~ce Ia’ + .iik”L Ib a’in (14)
to obtain a sufficient condition

L << ~a~ [(WO – QC)2 + 7’]2. (22a)
copmc

Case 2: L < – ao’’a2/l @o” 12. Here we may mtitiply

the left side of (14) by al a2 + j(?o”L 1–1’2 to obtain the

sufficient condition

L << c [(WO—(+)2 + 7’]2 [a’ + ai’La2 + I &“L 12].
~PQ a

(22b)

The criterion given in [5, eq. (30)] for the validity

of (4) – (6) can be written in the present notation as

ca3 az-y’[(~o — WC)’ + ~’]
L<<— (23)

W’16JC a’ + +ao”L

The presence of the term ao’ = a’ + @o”L in the de-

nominator indicates either a typographical error or an

analytical one, since allowing U02 + O implies validity

for all L which cannot be true as can be easily seen if we

suppose we are operating on the resonance peak (COO= w.).

Since the derivation of (23) was not presented in [5] it

is not possible to directly compare it with the criteria

(22); however, this does point up the need to use (4)-(6)

with caution.

Finally, consider a point of operation moderately re-

moved from resonance (I COO– w 1’ > 72/3). If (4)–(6)

are valid, then a 40-percent pulse broadening occurs at

Lo = & [(00 – %)’ + 7’-J3I2

according to (19). Because CXO”> 0, we are in Case 1,

and since

1<< 2a[(coo – C0.)2+ y2]l/2

is satisfied by virtue of (21), condition (22a) is satisfied.

On the other hand, at this distance the wave has been
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attenuated roughly by a factor exp[ —~CVoLo], and

+IoLO = $ [ (coo — WC)z + ~Z]l/q >>1

as before. Under these conditions then, attenuation rather

than broadening would seem to be the main concern in

media obeying dispersion law (20).
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