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ational method automatically adjusts the amplitudes of
surface-wave modes in the appropriate manner to con-
struct the system modes, but the various integrals in
Section IT will diverge if radiation modes are used, so that
some modification of the present method would be neces-
sary to treat problems of this type.
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Single-Mode Pulse Dispersion in Optical Waveguides

EDWARD F. KUESTER, sSTUDENT MEMBER, IEEE, AND DAVID C. CHANG, MEMBER, 1EEE

Abstract—~The limitations of a widely used method for analyzing
pulse distortion in a single-mode waveguiding structure are derived.
The results are applied to propagation in optical waveguides, and for
cases where material dispersion is dominated by a broad resonance
line, pulse attenuation is found to be much more serious than the
broadening of the pulse. In extremely low-loss regions, however,
other effects may cause the reverse to be true.

I. INTRODUCTION

ITH THE RECENT development of extremely
low-loss optical waveguides [1] making feasible
long-distance transmission via this medium, there has
been increased interest in determining the pulse charac-
teristics of such devices [2], [3]. These characteristics
are determined by the nonlinearity of the 8 — « charac-
teristies of individual modes, and, in multimode guides,
by the differences in group velocity between different
modes. In this paper we address ourselves to the first of
these causes, referring the reader to [37] for a discussion
of the second.
We shall obtain a more precise formulation for the

Manuscript received March 19, 1975; revised June 5, 1975. This
work was supported by the Air Force Office of Scientific Research
under Grant AFOSR-72-2417,

The authors are with the Electromagnetics Laboratory, Depart-
ment of Electrical Engineering, University of Colorado, Boulder,
Colo. 80302.

region of validity of a widely used technique [2], [4]-[6]
for analyzing, approximately, the distortion of a single
pulse, and apply these results to the study of such pulses
in optical waveguides.

II. PROPAGATION OF A GAUSSIAN PULSE

We seek to analyze the behavior of a pulse of Gaussian
envelope

F(®) = (aVr)=2 exp(—1/2a2) exp (juot) (1)

with center frequency wp and width ¢ which has been
normalized to unit strength

[15w =1

as it propagates along an arbitrary transmission channel of
transfer function S(w) = exp[—jB8{(w)L]. Here L is the
length of a section of the channel between the input
(z = 0) and the output, and g(w) = h(w) — }ja(w) is
the frequency-dependent propagation constant of the
channel split into phase constant and (power) attenua-
tion constant. The output signal is then represented by
the usual Fourier-transform method

1 -]
alt) = 5 /_ F@)S@) expie) da (2)
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where F(w) is the transform of f(¢)

F(o) = /;“’ J() exp(—jwt) dt

= (2avm)'2 exp[ —30*(w — wo)?].

We shall assume throughout the paper that f(¢) is “quasi-
monochromatic”; i.e., that aws >> 1 so that F(w) is sig-
nificantly different from zero only in a very narrow band-
width about we.

Commonly [2], [4]-[6], this type of problem has been
analyzed by expressing 8{w) as a Taylor series about wo

Blw)L = {Bo + (&0 — wo)Bd + F(0 — wo)?Bo”
+ §(o — w0)®8"”" + ---}L (3)

where primes denote differentiation with respect to o,
and the subscript zero indicates evaluation at we. If the
series (3) is truncated after the third term, it is a straight-
forward matter to evaluate (2) in closed form [27] to obtain

q(t) = r(t — L/vao) exp[ — 3ol + jwo(t — L/vee)] (4)

where v, = w/h(w) is the phase velocity and v, = 1/h/ (w)
is the group velocity. The envelope of () is given by

Lr(t) |F = (bve)—t a exp{ (t n lao'h0/:L2> /b2
Qg

1 o212 ho''L
w5 (GO e
where

b= [a? + (h"L/a)" % a = [@ + 3oL (6)

Thus, outside of amplitude factors, phase delays, and
group delays, this analysis predicts that the signal remains
Gaussian but is broadened from the width a to the width b.

The usual justification for the foregoing method is
that the spectrum F(w) is negligible away from wo, and
any error caused by truncation of the Taylor series (3)
will therefore not be significant. However, for sufficiently
large L all spectral components become important, and
just when (4)—(6) cease to be a valid approximation to
the output is unclear. Some improvement might be ex-
pected if, say, the fourth term of (3) were retained, as
done in [7]; however, because (3) has a finite radius of
convergence, retention of additional terms of (3) will
not, in general, improve the region of applicability of the
solution obtained in this way [5]. Furthermore, quite
apart from the type of signal f(f) we are considering, the
three-term approximation to 8(w) does not represent a
causal dispersion relation [87]. Finally, if only three terms
of (8) are used, we must have a? + 1a¢’L > 0 for the
integral (2) to converge, and it is not clear how essential
this condition is.

What is needed, then, is a way to “pull out” the Taylor
series from under the integral sign somehow so that the
error incurred by its truncation may be more easily
estimated. One way to do this [6], [9]-[11] is to apply
the method of saddle points [12] to (2), where we may

883

take aw? as the large parameter by virtue of the narrow
assumption on f(). We thus rewrite (2) as

12
o = Zam” f explatadd (@)1 do  (7)
‘ll' —a0
where
2 t — B(w)L
N k) 2 [ | B
wo acwg
Any saddle point w, must satisfy
1 t — o) L
0= ) =~ L (2 1) 4 [ FEEE]
wWo \Wo awo :
or equivalently
t — ) L
o = a0 4 j Ll (9b)

Assuming for the moment that the path of integration
may be deformed from the real axis into a stecpest descent
path (SDP) passing through the saddle point w, in the
complex w plane, and also that only one saddle point
contributes to the evaluation of (7) (we shall examine
these points more closely), ¢(¢) may be represented by the
first term of the saddle-point asymptotic series

q(t) ~ [(aVr) Va0 [ —¢" (ws) 1V* exp[awid (ws) ].
(10)
The branch of [ —¢''(ws) ]~/ is chosen so that

arg[—¢" (ws) 1

is equal to the slope of the SDP at w, with respect to the
positive real axis.

At this point there is no integration to perform and
there remains only to calculate ¢(w;) and ¢ (w;) (since
w, 18, in general, complex and we presumably have in-
formation about 8(w) only on the real axis of the complex
» plane, and only at certain points) in terms of quantities
evaluated at wo. Since now «; is defined implicitly and fune-
tions evaluated at w, are required, the simple Taylor series
(3) no longer serves our purposes; we make use of a series
expansion due to Levi-Civitd [13] (details of the deriva-
tion for the complex case with remainder term must be
assembled from [14] and [15] sinee the infinite series
only is given without proof in [137]). Briefly, given fune-
tions f and ¢ analytic over suitable regions and a variable
y defined implicitly as a function of another variable z by
y = z + ¥(y), we may expand f(y) as

n—1

f) =fl@) + X —

m—l

le(x) g

{ 1 ™
Vo al !

A[\ﬁiﬂ;)]" [{ :V(w) 4 } f(w)]

f(z) + R,

R, =
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and x and w are related by w — ¢ (w) = z — 8¢ (z). Here
6 is some real number with 0 < ¢ < 1, and A is some com-
plex number with [ A | < 1.

If we take f(y) = ¢(ws), ¥ = @y, T = wo, ¥(y) = j[t —
B (ws)L]/a?, and n = 4, we have

#(w;) = jwit — Bol) (aPwe?) ™ — (¢t — B/L)?
[20%0 (@ + j8"L) I — Bo™"L(t — BJ/L)?
«[6a2we(a + 786"’ L)*T™ + O[ (t — Bo’L)*].

Similarly, if we use f(y) = ¢"'(w:) and n = 1, we get

(11)

¢"(w) = —[1 +jB"L/e*]/es® + By (12)
where .
Ry = A BTRL(E — Bo'L).
a*ot o + j8(Q)L
The point Q satisfies

Q = wo — j0(t — /L) /at + j[t — B'(Q)L]/a?

for some constant 8 on [0,1]. A is a complex number of
magnitude not greater than one, as indicated previously.

The insertion of (11) and (12) into (10), neglecting
Ry and the third and fourth terms on the right-hand side
of (11), yields precisely (4)—(6). If we may, for purposes
of error estimation, approximate functions evaluated at
@ by the corresponding values at w, (this is reasonable if
| s — o | is not too large, an assumption consistent with
the upper bounds on L found later in this paper), then
this neglect requires that we satisfy the conditions

IR AT
| & + jBo"L ?
and a similar condition involving | 8111, | which can be

shown to be satisfied for ¢ and L of interest as long as (13)
is.

(13)

III. INTERPRETATION AND LIMITATIONS
OF THE RESULTS

The condition (13) for the validity of (4)—(6) is not

independent of {, but holds only for sufficiently small’

[t — B'L |/] & + jBy"’L |*2. Thus the Gaussian character
of the output pulse is preserved only if we follow closely
enough the crest of the pulse envelope, whereas the tails
of the pulse may be distorted in an unknown way. Equa-
tions (4)—(6) will still be meaningful if they retain validity
for the most significant portion of the envelope; i.e.

[t — /L |/l @ + jB""L |2 < 5.
Therefore, an equivalent reformulation of (13) is seen to be
[B"L| /56 + jBo'L |32 < 1. (14)

(Notice that 8y’ does not necessarily have to be small
compared to 8y'’a.) In fact we do not need to concern
ourselves at all with the pulse tails, since the Gaussian
is nonzero for all ¢ and therefore does not represent a
causal signal in the sense of information transmission. It

/
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is possible to truncate the signal at points of arbitrarily
small amplitude on the tails such that the transient pre-
and posteursors resulting therefrom will have arbitrarily
small amplitude compared with that of the Gaussian
[11]. The details of dispersive propagation of signals
with such abrupt turn-on and turn-off points have been
described elsewhere [167]. '

Thus the additional time-displacement term ay'ho'’ L2/ 242
in (5) may not be explained in terms of the noncausality
of the signal [17]. Instead, it must be realized that the
presence of frequency-dependent absorption results in a
differential attenuation between different frequency com-
ponents of the pulse which results in the previously men-
tioned displacement of the pulse maximum. One implica-
tion of this is that, in absorbing transmission channels,
the classical group velocity no longer gives the velocity
of energy propagation, a point discussed further in [5],
[6], [9], [17], and [18].

Another condition of validity for (4)—(6) not reflected
in (13) is that the contour deformation from the real axis
to the SDP in (7) be permissible, and that only a single
saddle point in the neighborhood of w, eontribute to the
asymptotic evaluation of the integral. Inthe first place, any
singularities of 8(w) encountered in the deformation must
be such that their contribution to the evaluation of (7)
is small compared to that of the saddle point as a result of
being damped out by the Gaussian envelope. If this were
not the case, w, would be so close to the singularity that the
lower order derivatives of 8(w) would be expected to be-
come large (as discussed at the end of the previous sec-
tion) and (4)-(6) lose validity anyway.

For L > 0 but sufficiently small, the inverse function.
theorem [19] assures us that «,(L) is unique, at least in
the neighborhood of wy, if 1 4+ j8"’(w)L/a? # 0 in a
suitable neighborhood of «,. It can be shown that condi-
tion (13) is sufficient to assure us this uniqueness. Un-
less such a zero occurs near w,, the Levi-Civity series
unambiguously gives an expression for «,(L), and any
other saddle points are assumed either not to be encount-
ered on the SDP deformed from the real axis, or to con-
tribute an exponentially small term, due again to the
damping of the Gaussian. Now from well-known properties
of materials and waveguides, we have it that for suf-
ficiently high frequency 8(w) ~ w/c [207], [217]. This be-
havior is not enough to essentially alter that of ¢(w)
which is dominated by the Gaussian. In the general case,
the regions where Re[¢(w) — é(w:s)] < 0 can be de-
scribed asymptotically and are as shown in Tig. 1. The
contour deformation is readily shown to be a permissible
one.

It should be noted here that the condition a2 + ay”L >
0, which is required to assure the convergence of the
inversion integral when (4)—(6) are derived in the con-
ventional manner [5], is, as such, not necessary here. The
condition that is required is that 1 + j8”(w)L/a? have
no zeros in a sufficiently large neighborhood of «,; more
precisely, that such zeros wg, if they exist, should be such
that a?we® | 75 |2 >> 1 so as not to affect the asymptotic
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Fig. 1. Contours of integration. Shaded area indicates Re [¢(w) —
¢(ws)] < 0, where SDP may be joined to the real axis econtour at
infinity. Here wso = wo + j{t — L/c)/a%

evaluation of (7). A rough error estimate similar to the
ones given previously shows that (again, if we are not near
any singularity of g(w), a self-consistent hypothesis)
condition (13) is sufficient to achieve this separation of
wp and w;.

In the Appendix, a specific functional form of 8(w) is
examined in light of the discussion of this section.

IV. DISPERSION LENGTH CRITERIA

Using a parameter A = L/a?, we define and examine a
function G(A4) which measures the relative broadening
of the pulse

1+ LA
1 + ao”A + lﬁOH I2A2

valid under the conditions outlined in the previous section.
If we consider a train of such pulses at a rate of N pulses/s
(with a corresponding duty cycle A = Na) there is a
certain amount of overlap between adjacent pulses. For
a given value of A, the relative power level of one of the
pulses (compared to the power level at the peak of the
pulse) midway between adjacent pulses is given by

5 = exp[—1/(2Nb)?] = exp[—G(A)/4A7].

G(4) = &/b =

(15)

(16)

This overlap level has its minimum value 8 at A = 0.

In a practical optical communication system, accept-
able values of § may be restricted by the capabilities of
system components other than the transmission channel
(pulse generators, detectors, and so on). It therefore
seems most natural to assume that system considerations
result in a maximum allowable overlap level of 8,,.x, rather
than attempting to maximize the pulse rate as if the chan-
nel were in igolation, as done in [2]. A maximum usable
propagation length or dispersion length is then given by
Lo = a?*4,, where A, is the positive root of

G(4o) = Go = 17)

It is readily seen that 8y < 8max is required for a positive
root to exist.

—4A2 1IN dpax.
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In two particular cases, the solution to (17) takes rather
simple forms. If | $a0” | < | ho"’ | (such as in low-attenua-
tion channels)

Ag >~ | b [P'[(1 — Go) /Go ] (18)

gives explicitly the dispersion length L, in terms of dmax
according to (17). Furthermore, if one assigns Gy = %
(which is roughly a 40-percent broadening), (17) gives

exactly
Ao = | B [ (19)
V. DISPERSION IN OPTICAL WAVEGUIDES

For single-mode propagation over real waveguides,
h"(w) and o'’ (w) depend both on the geometry of the
waveguide and on the dispersive propertiess of the ma-
terials used. Although, in general, the two effects may
be of comparable magnitude, under many conditions the
material effect is dominant [22] (in particular this is true
for dispersion-optimized fibers [23]). There even exist
structures in which the two effects can effectively cancel
one another, thus allowing extremely low-dispersion
operation [247]. Although in general the two effects are
not siraply additive [237], they may be examined sepa-
rately to obtain order-of-magnitude estimaies for guide
information rates.

Waveguide geometry effects have been studied for
many cases [2], [227-[25]. A number of lossless and
lossy low-permittivity contrast (or weakly guiding) in-
homogeneous slab waveguides were studied in [25], and
even for guides with fairly high (500-dB/km) frequency-
independent loss, | 3a’’ | was found to be at least an order
of magnitude smaller than | 2" | in all cases, allowing the
use of (18). The largest dispersion found for any of the
guides analyzed was 2 | k" | =~ 10~ s2/m, so that a pulse
of width ¢ = 3 X 10~ s is broadened only 10 percent
over a distance L = 1 km (corresponding to a maximum
pulse rate of N = 30 X 10° pulses/s for this broadening
criterion). Fig. 2 shows a representative slab waveguide
and plot of a normalized version of | h'’ | versus frequency
taken from [257.

In some situations, the material dispersion can be well
represented by a fairly broad resonance-type dispersion
law such as in the Appendix (the OH-radical absorption
due to the presence of water molecules in glass fibers is a
good example of this [267]). Away from the influence of
such resonances, however (especially in the extremely
low-attenuation regime of fiber materials such as silica),
other more complicated considerations will dominate the
behavior of 8(w) [271-[29]. Since it is shown in the Ap-
pendix that, except for a region near the resonance peak
where the present theory does not apply, aitenuation is
a much more serious problem than single-mode disper-
sion, and also since experimental measurements on low-
loss fibers indicate that significant pulse broadening is
possible with minimal attenuation [307], such simple
models are evidently inadequate to accurately describe
the behavior of useful long-distance waveguide materials.
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VI. CONCLUSION

An analysis of single-mode pulse distortion has been
carried out using a method which enables the region of
applicability for a widely used approximation to be more
precisely specified according to (13). The model dielec-
tric dispersion law used in [5] is examined. The validity
criterion contained therein is found to be in error, and the
correct criteria in light of the present derivation are
given. Applying the results to the properties of optical
waveguides, it is found that unless low-loss long-distance
guides are considered, material dispersion considerations
limit operation primarily by signal attenuation rather
than by pulse broadening. This is true in particular for the
relatively lossy materials tolerable in integrated optical
devices. '

APPENDIX

In [5], a study was made of the propagation of a
Gaussian light pulse through a medium whose wave-
number 8(w) obeyed the law

WpWe

clw — w, — Jv) (20)

O
B(w) = —~

where 7y, w, wp, and v are all real adjustable constants
and c is the speed of light. The Gaussian pulse of width
a described by (1) is then propagated and broadened
as described in Section II. It was assumed in [5] that the
resonance of the medium was broad compared to the
pulse bandwidth but still narrow compared with the
carrier frequency, and that the resonance peak dominated
the attenuation characteristic a(w) while only weakly
affecting h(w). In other words

woll 3> ¥4 > 1
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wp/Y K oo (21)

For some range of ¢ and L, then, equations (4)—(6)
apply, with
wc)[(wo - w0)2 _ 372]
¢ [(wo — wo)? + v2 P

wpwe (wo —

h()" = —2

WpWe 7[3 ("-’0 - wc)z - 72]
¢ [(w— w)?+ P

with the region of validity given by (14) with ._

Sas” = 2

Buwpw,

[B | = e [(wo — wo)? + ¥

Direct substitution into (14) gives a rather messy cri-
terion for L; however, sufficient bounds on L may be ob-
tained by considering two cases.

Case 1: L > —ay’a?/| B’ |2. This implies a* < | a? +
780"'L | so that we may replace | a* + j8/'L | by a* in (14)
to obtain a sufficient condition

]
L« = [ar — wo)* + 7T

Wpwe

(22a)

Case 2: L < —ay'a?/| 8y’ [>. Here we may multiply
the left side of (14) by a| a® + jB8o'L |12 to obtain the
sufficient condition
L« -5 [(wo — w)? + 2

a

WpWe

[a* + ao’La? + | 8L |7].

(22b)
~ The criterion given in [5, eq. (30)] for the validity
of (4)—(6) can be written in the present notation as
ca® ay?[(wo — w)? + 2]

L
<« a® + %a()”L

(23)
Wple
The presence of the term a? = a* + fay”L in the de-
nominator indicates either a typographical error or an
analytical one, since allowing a@® — 0 implies validity
for all L which cannot be true as can be easily seen if we
suppose we are operating on the resonance peak (wo = w,).
Since the derivation of (23) was not presented in [5] it
is not possible to directly eompare it with the criteria
(22) ; however, this does point up the need to use (4)—(6)
with caution.

Finally, consider a point of operation moderately re-
moved from resonance (| wo — «; |2 > ¥%/3). If (4)—(6)
are valid, then a 40-percent pulse broadening occurs at

ac

Lo = 5 [ — wo)? + 7"

2wy,

according to (19). Because a’’ > 0, we are in Case 1,
and since

1 K 2af (w0 — wp)? + 2]

is satisfied by virtue of (21), condition (22a) is satisfied.
On the other hand, at this distance the wave has been
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attenuated roughly by a factor exp[ —%aLo], and
10 Lo = ’_7’32 _ 2 27j1/2
gaolo = 3 [(wo — we)? + 212> 1

as before. Under these conditions then, attenuation rather
than broadening would seem to be the main concern in
media obeying dispersion law (20).
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